Environmental Engineering

The scope of Environmental Engineering is immense.     The discipline includes waste management and hazardous waste management.   Studies would evaluate the significance of hazards, advise on treatment and containment, and develop regulations to prevent mishaps. Environmental engineers also design municipal water supply and industrial wastewater treatment systems as well as address local and worldwide environmental issues such as the effects of acid rain, global warming, ozone depletion, water pollution and air pollution from automobile exhausts and industrial sources. At many universities, Environmental Engineering programs follow either the Department of Civil Engineering or The Department of Chemical Engineering at Engineering faculties. Environmental "civil" engineers focus on hydrology, water resources management, bioremediation, and water treatment plant design. Environmental "chemical" engineers, on the other hand, focus on environmental chemistry, advanced air and water treatment technologies and separation processes. Additionally, engineers are more frequently obtaining specialized training in law and are utilizing their technical expertise in the practices of Environmental engineering law.

Ever since people first recognized that their health and well-being were related to the quality of their environment, they have applied thoughtful principles to attempt to improve the quality of their environment. The ancient Harappan civilization utilized early sewers in some cities. The Romans constructed aqueducts to prevent drought and to create a clean, healthful water supply for the metropolis of Rome. In the 15th century, Bavaria created laws restricting the development and degradation of alpine country that constituted the region's water supply 
The field emerged as a separate environmental discipline during the middle third of the 20th century in response to widespread public concern about water and pollution and increasingly extensive environmental quality degradation. However, its roots extend back to early efforts in public health engineering. Modern environmental engineering began in London in the mid-19th century when Joseph Bazalgette designed the first major sewerage system that reduced the incidence of waterborne diseases such as cholera. The introduction of drinking water treatment and sewage treatment in industrialized countries reduced waterborne diseases from leading causes of death to rarities. In many cases, as societies grew, actions that were intended to achieve benefits for those societies had longer-term impacts which reduced other environmental qualities. One example is the widespread application of DDT to control agricultural pests in the years following World War II. While the agricultural benefits were outstanding and crop yields increased dramatically, thus reducing world hunger substantially, and malaria was controlled better than it ever had been, numerous species were brought to the verge of extinction due to the impact of the DDT on their reproductive cycles. The story of DDT as vividly told in Rachel Carson's "Silent Spring" is considered to be the birth of the modern environmental movement and the development of the modern field of "environmental engineering." Conservation movements and laws restricting public actions that would harm the environment have been developed by various societies for millennia. Notable examples are the laws decreeing the construction of sewers in London and Paris in the 19th century and the creation of the U.S. national park system in the early 20th century. Briefly speaking, the main task of environmental engineers is to protect public health by protecting (from further degradation), preserving (the present condition of), and enhancing the environment. Also, they develop new forms of energy and ways to increase the efficiency of generating and using energy. They try to get people to convert to environmental friendly energy and products.